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ABSTRACT: The multiinput–multioutput identification for a continuous styrene poly-
merization reactor using a polynomial ARMA model is carried out by both simulation
and experiment. The pseudorandom multilevel input signals are applied for model
identification in which input variables are the jacket inlet temperature and the feed
flow rate, whereas the output variables are the monomer conversion and the weight-
average molecular weight. The use of a polynomial ARMA model for identification of the
multivariable polymerization reaction system is validated by simulation study. For the
experimental corroboration, correlations are developed to convert the on-line measure-
ments of density and viscosity of the reaction mixture to the monomer conversion and
the weight-average molecular weight. The on-line values of the conversion and weight-
average molecular weight turn out to be in good agreement with the off-line measure-
ments. Despite the complex and nonlinear features of the polymerization reaction
system, the polynomial ARMA model is found to satisfactorily describe the dynamic
behavior of the polymerization reactor. Therefore, one may apply the polynomial ARMA
model to the optimization and control of polymerization reactor systems. © 2000 John
Wiley & Sons, Inc. J Appl Polym Sci 76: 1889–1901, 2000

Key words: identification; ARMA model; input–output model; continuous polymer-
ization reactor; on-line measurement

INTRODUCTION

A polymerization reaction system is subject to a
complex reaction mechanism and shows highly
nonlinear features. Thus, the first-principle
model of a polymerization reactor may contain a
large number of kinetic parameters and nonlinear
terms. These parameters are neither readily
found from the literature nor easily determined
by experiments. As an alternative to the first-
principle model, it may be advantageous to use a

model structure whose parameters can be identi-
fied from input–output data. Because input–
output models can effectively describe a nonlinear
system, a number of those models have been em-
ployed for the construction of model-based con-
trollers, such as the model predictive controller
(MPC).

A wide variety of nonlinear input–output mod-
els have been proposed for use in identification
and control of chemical processes. These include
Volterra series models, bilinear models, Hammer-
stein models, Wiener models, and autoregressive
moving-average (ARMA) models. Bartee and
Georgakis1 used a bilinear model for the identifi-
cation of a continuous stirred tank reactor (CSTR)
and implemented the model in a reference system
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control structure. A binary distillation column
was identified by Eskinat et al.2 by using the
Hammerstein model. Fruzzetti et al.3 employed
the Hammerstein model in a nonlinear MPC
scheme for the pH control of a chemical reactor
and for the control of a binary distillation column.
Although the Hammerstein model is convenient
for the controller design and also for handling the
process noise, it is incapable of modeling systems
that exhibit output multiplicities as displayed by
various chemical systems.

Maner and Doyle III4 used the autoregressive
plus Volterra model to identify a continuous
methyl methacrylate (MMA) polymerization reac-
tor and implemented the model in the control of
polymer properties using a nonlinear MPC. Her-
nandez and Arkun5 identified a single-input–
single-output (SISO) polynomial ARMA model for
a CSTR in which first-order exothermic reaction
occurred. The authors examined the steady-state
multiplicity by using the model, and proposed a
nonlinear MPC scheme based on the polynomial
ARMA model.

The main advantage of polynomial ARMA
models is that it can describe the process nonlin-
earities as polynomial nonlinearities, and can
greatly simplify the estimation of the parameters
from the input–output data. Moreover, polyno-
mial ARMA models are superior to Volterra series
models in the sense that the number of parame-
ters needed to approximate a system is, in gen-
eral, much less with polynomial models. There
are numerous studies for identification of chemi-
cal processes using input–output models. How-
ever, applications to the polymerization reactor
systems are scarce, and furthermore, most of
them are limited to simulation studies.

In this study, we perform the multiinput–
multioutput (MIMO) identification for a continu-
ous styrene polymerization reactor using the
polynomial ARMA model not only by simulation
but also by experimentation. The identified
ARMA model is validated by comparison of the
open-loop response of the model with that of the
plant in simulation and experiment. Especially,
the output data in the experimental identification
are obtained from on-line measurements, which is
proven very effective for the property control of
the polymerization reactor system.

NONLINEAR MODEL STRUCTURE

The polynomial ARMA model is defined as fol-
lows:
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where qy and qu denote the number of outputs
and inputs, respectively, while ny and nu indicate
the number of lags on the outputs and inputs,
respectively. The model is linear in the parame-
ters u, and its regressors and parameters may be
identified from input–output data. In this study,
input variables are the jacket inlet temperature
and the feed flow rate, whereas output variables
are the monomer conversion and the weight-av-
erage molecular weight.

CONTINUOUS STYRENE POLYMERIZATION
REACTOR MODEL

To perform the simulation study, we consider the
mathematical model of a continuous stirred-tank
reactor in which solution polymerization of sty-
rene occurs. The reaction kinetics is assumed to
follow the free radical polymerization mechanism
including chain transfer reactions to both solvent
and monomer. The free radical polymerization
mechanism for styrene is summarized in Table I.

One can derive the mass balance equations for
the initiator, solvent, and monomer, respectively,
as follows:

d~IV!

dt 5 qf If 2 qI 1 ~2kd!IV

d~SV!

dt 5 qf Sf 2 qS 1 ~2ktrsSG0!V

d~MV!

dt 5 qf Mf 2 qM 2 $2fkdI 1 ~kp 1 ktrm!MG0%V

(2)
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For the first three moments of living and dead
polymer concentrations, the balance equations
can be expressed as

d~G0V!

dt 5 2qG0 1 ~2fkdI 2 ktcG0
2!V

d~G1V!

dt 5 2qG1 1 $2fkdI 1 kpMG0 2 ktcG0G1

1 ~ktrmM 1 ktrsS!~G0 2 G1!%V

d~G2V!

dt 5 2qG2 1 $2fkdI 1 kpM~G0 1 2G1!

2 ktcG0G2 1 ~ktrmM 1 ktrsS!~G0 2 G2!%V

d~F0V!

dt 5 2qF0 1 $0.5ktcG0
2 1 ~ktrmM 1 ktrsS!G0%V

d~F1V!

dt 5 2qF1 1 $~ktcG0 1 ktrmM 1 ktrsS!G1%V

d~F2V!

dt 5 2qF2 1 $ktc~G0G2 1 G1
2!

1 ~ktrmM 1 ktrsS!G2%V (3)

The energy balances for the reactor and the
jacket give rise to the following equations

d~~rCp!mVTr!

dt 5 ~rCp!mqfTf 2 ~rCp!mqTr

1 ~2DHp!kpMG0V 2 UA~Tr 2 Tj!

d~~rCp!cVjTj!

dt 5 ~rCp!cqcTjin 2 ~rCp!cqcTjout

1 UA~Tr 2 Tj! 1 UaAa~Ta 2 Tj! (4)

To take into account the gel effect, we use the
empirical correlation suggested by Hamer et al.,6

which is listed in Table II. The physical properties
and kinetic parameters were taken from the lit-
erature and are also listed in Table II.

Table I Reaction Mechanism for Free Radical
Styrene Polymerization

Initiation IO¡
kd

2w•

wz 1 M ¡

ki

R1
•

Propagation R1
z 1 MO¡

kr1

R2
•

Rj
z 1 MO¡

kpj

Rj11
•

Termination by combination Ri
z 1 Rj

zO¡
ktc

Pi1j

Chain transfer to monomer Ri
z 1 MO¡

ktrm

Pi 1 R1
•

Chain transfer to solvent Ri
z 1 SO¡

ktrs

Pi 1 S•

Table II Physico-Chemical Data and the Gel Effect Correlation Used in the Mathematical Model
for Styrene Polymerization

Parameters Values Reference

Physical Properties
rm [g/L] 924.0–0.9813 (T 2 273.15) Schuler and Suzhen (1985)
rs [g/L] 885.5–0.9553 (T 2 273.15) Schuler and Suzhen (1985)
rp [g/L] 1084.0–0.6053 (T 2 273.15) Takamatsu et al. (1988)

Rate Constants
kd [s21] 1.58 3 1015exp(230780/RT) Duerksen et al. (1967)
kp [L/mol/s] 1.051 3 107exp(27064/RT) Duerksen et al. (1967)
kt0 [L/mol/s] 1.255 3 109exp(21680/RT) Duerksen et al. (1967)
ktrm [L/mol/s] 1.186 3 107exp(211767/RT) Yoo and Rhee (1999)
ktrs [L/mol/s] 3.148 3 109exp(216264/RT) Yoo and Rhee (1999)

Gel Effect Correlation

gi~X, T! ;
kt

kt0
5 exp@22~AX 1 BX2 1 CX3!# Hamer et al. (1981)

where

A 5 2.57 2 5.05 3 1023T
B 5 9.56 2 1.76 3 1022T
C 5 23.03 2 7.85 3 1023T
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SIMULATION STUDY

Reference conditions of simulation study are sum-
marized in Table III. The regressors and model
parameters were obtained by using a stepwise
model building algorithm.7 In this algorithm, we
used both popular F-test13 and Akaike’s informa-
tion criterion7 as model verification methods. Be-
cause the F-test seems to have the disadvantage
of being difficult to choose the proper levels of
significance, Akaike’s information criterion was
used together in model identifications. The proce-
dure of stepwise model building algorithm quits if
the F-test shows that the model equation is not
significant or if Akaike’s information criterion
gives a value greater than that for the previous
model.

The nonlinear order of the model and the num-
ber of lags on the inputs and outputs were speci-
fied as n 5 2, nu 5 3, and ny 5 3, respectively.
The mathematical model was considered as the
plant in simulations. The inputs and outputs
were scaled as follows:

y1 5 X, y2 5
Mw 2 Mw min

Mw max 2 Mw min
(5)

u1 5
Tjin 2 Tjin min

Tjin max 2 Tjin min
, u2 5

qf 2 qf min

qf max 2 qf min
(6)

where X, Mw, Tjin, and qf denote the monomer
conversion, the weight-average molecular weight,
the jacket inlet temperature, and the feed flow
rate, respectively. The scaling factors in eqs. (5)
and (6) are listed in Table IV.

Although a three-level sequence is persistently
exciting, the results of preliminary study revealed
that a four-level sequence was superior to a three-
level sequence. Hence, the input signals, u1 and
u2, were drawn from a uniform distribution with
four levels. Just like the pseudorandom binary
signals (PRBS), the pseudorandom multilevel sig-
nals are persistently exciting for a system, but the
latter have several additional features.8 The
pseudorandom multilevel signals include interior
points of input region, are closer to white autocor-
relation function, and excite nonlinear modes that
PRBS cannot. Because of these features, we used
the pseudorandom multilevel input signals rather
than the PRBS. The process white noise with zero
mean and standard deviation of 0.02 was added to
both the conversion and the molecular weight.

The output data obtained by the mathematical
model against the pseudorandom multilevel input
signals and the response of the identified polyno-
mial ARMA model are shown in Figure 1. In this
case, the sample time was 2 min and switching
probability PS, which represents the probability
of input change at the end of any sampling inter-
val, was assumed to be 0.1. To investigate the
reliability of the identified model, the percentage
variance accounted for (VAF) index was intro-
duced, which is defined as follows:

Table III Reference Conditions for Simulation
and Experiment

Simulation and Experimental Conditions

Condition Item Value

Initial charge Monomer (styrene) 400 mL
Solvent (toluene) 400 mL
Initiator (AIBN) 8 g

Feed Monomer 4.34 mol/L
concentration Solvent 4.70 mol/L

Initiator 0.06 mol/L
Operating

conditions
Reactor
temperature

50–85°C

Feed flow rate 5–30 mL/min

Simulation Conditions

Reactor volume (V) 1 L
Jacket volume (Vj) 0.8 L
Feed temperature (Tf) 20°C
Ambient temperature (Ta) 20°C
Initiator efficiency (fi) 0.5
Heat of reaction for propagation

(DHp)
74,500 cal/mol

Thermal conductance
UA 16 cal/s/K
UaAa 3.2 cal/s/K

Heating or cooling water flow rate
(qc)

2.5 L/min

Table IV Scaling Factors for the Inputs
and Outputs

Input and Output Scaling Factor Value

Weight-average Mw max 60,000
Molecular weight Mw min 10,000
Jacket inlet Tjin max 85°C
Temperature Tjin min 55°C
Feed flow rate qf max 30 mL/min

qf min 5 mL/min
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where N, y, and ŷ denote the number of data
points, the plant (or the mathematical model) out-
put, and the identified model output, respectively.
The VAF index is used as a measure of the rela-
tive accuracy of the model and its range is be-
tween 2` and 100%. The identified model for the
conversion was constituted of nine regressors and
had a VAF of 89.66%. For the molecular weight,
20 regressors were included in the model and a
VAF of 95.30% was obtained. The results of the
identification are summarized in Table V.

Figure 2 presents the input–output data used
to identify the models for the conversion and the
molecular weight and the response of the identi-
fied polynomial ARMA model when PS 5 0.5. In
this case, 8 and 16 regressors were included in the
models of the conversion and the molecular
weight, respectively. The VAF was found to be
90.48 and 95.54% for the respective model. The
results of the identification are summarized in

Table VI. As shown in Figures 1 and 2, the higher
switching probability would be more accurate. Be-
cause, however, the difference between the re-
sults for the case of PS 5 0.1 and PS 5 0.5 is very
small, and input signals with PS 5 0.5 are too
demanding for practical implementation, we
chose 0.1 for PS in experiments. Considering the
large time constants of the polymerization reac-
tion system, this choice of PS is found more desir-
able.

Figure 3 shows the responses of the mathemat-
ical model and the polynomial ARMA model,
which is identified in the case of Figure 1, to a
series of step changes in both inputs. In addition,
the responses of the linear ARMA model and the
autoregressive-plus Volterra model, which was
used in the work of Maner and Doyle III, are
compared with those of the polynomial ARMA
model. The linear ARMA model and the autore-
gressive-plus Volterra model were identified by
the same method and under the same conditions
as for the case of the polynomial ARMA model.
The results of the identifications are summarized
in Table VII. The outputs estimated from the
polynomial ARMA model for both conversion and
the molecular weight are in good agreement with
those of the mathematical model, whereas the

Figure 1 Output data obtained by the mathematical model against the pseudoran-
dom multilevel input signals with PS 5 0.1 and four levels and the response of the
identified polynomial ARMA model.
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linear ARMA model and the autoregressive-plus
Volterra model show some discrepancies in both the
molecular weight and the conversion, especially in
the latter part of the reaction course. For the case
of a linear ARMA model or an autoregressive-
plus Volterra model, therefore, we have to include
more regressors by increasing the order of nonlin-
earity or the number of time lags on inputs and
outputs to improve the output to the extent of a
polynomial ARMA model.

ON-LINE MEASUREMENTS AND
EXPERIMENTAL STUDY

In this section, we consider the on-line measure-
ments of the conversion and the molecular weight
that are to be used for the identification. The
on-line measurements are essential for the prop-
erty control of a continuous polymerization reac-
tor system.

The density of polymer can be used effectively
to follow the course of polymerization and to ex-
amine the variation of monomer conversion X.

Ahn et al.9 proposed the correlation equation,
which may be used to calculate the monomer con-
version from the on-line density measurement.
This equation is given as follows:

X 5

S 1
rd

2
1
rm
D 2 WsfS 1

rs
2

1
rm
D

S 1
rp

2
1
rm
D (8)

in which rm, rs, and rp denote the densities of
monomer, solvent, and polymer, respectively.
Here, rd and Wsf represent the measured density
of reaction mixture and the weight fraction of
solvent in reactor, which may be assumed con-
stant.

Several correlations have been reported to de-
scribe the relationship between the specific vis-
cosity hsp and the intrinsic viscosity [h]. Lyons
and Tobolsky10 suggested the following equation

hsp 5 C@h#exp
kH@h#C
1 2 bC (9)

Table V Simulation Results of the Identification Using Pseudorandom Multilevel Input Signals with
PS 5 0.1 and Four Levels

VAF
Conversion y1(k) Weight-Average Molecular Weight y2(k)

89.66% 95.3%

Parameters Regressors Parameters Regressors

Models 0.02 1 20.08 1
0.20 y1(k 2 1) 0.40 y2(k 2 1)
0.34 y1(k 2 2) 20.48 y2(k 2 2)u2(k 2 3)
0.04 u1(k 2 1)u1(k 2 2) 0.59 y2(k 2 2)

20.18 y1(k 2 2)u2(k 2 1) 0.15 y1(k 2 3)u2(k 2 3)
0.32 y1(k 2 3) 0.49 y2(k 2 3)

20.02 y2(k 2 1) 0.05 y1(k 2 1)2

20.09 y1(k 2 1)u1(k 2 1) 20.22 u1(k 2 1)u1(k 2 2)
20.0025 u1(k 2 2)u1(k 2 3) 0.11 y1(k 2 2)u1(k 2 1)

0.04 u1(k 2 2)
0.05 u1(k 2 1)u2(k 2 1)

20.19 y2(k 2 2)u1(k 2 2)
20.22 y2(k 2 2)y2(k 2 3)
20.22 y2(k 2 1)y2(k 2 2)
20.27 y2(k 2 3)2

0.25 u1(k 2 1)
0.21 y1(k 2 2)

20.03 u2(k 2 1)2

0.03 u2(k 2 1)u2(k 2 2)
0.16 u1(k 2 1)u1(k 2 3)
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where C indicates the mass concentration (g/mL)
of the polymer in the reactor. For the styrene
polymerization system of this study, the parame-

ter kH and b were obtained as 0.9 and 0.8, respec-
tively. When the intrinsic viscosity [h] is deter-
mined by eq. (9) with on-line measurement of the

Table VI Simulation Results of the Identification Using Pseudorandom Multilevel Input Signals
with PS 5 0.5 and Four Levels

VAF
Conversion y1(k) Weight-Average Molecular Weight y2(k)

90.48% 95.54%

Parameters Regressors Parameters Regressors

Models 0.05 1 0.03 1
2.77 y1(k 2 1)y1(k 2 2) 0.33 y2(k 2 1)
0.09 y1(k 2 3)u1(k 2 1) 0.07 u1(k 2 1)u1(k 2 2)

20.02 y2(k 2 1)u2(k 2 1) 0.50 y2(k 2 3)
0.62 y1(k 2 3)2 20.32 y2(k 2 3)u1(k 2 1)
0.02 u1(k 2 1)u1(k 2 2) 0.27 u1(k 2 1)
0.03 y1(k 2 1)u2(k 2 2) 20.55 u1(k 2 1)2

0.06 y1(k 2 3)y2(k 2 2) 0.05 y2(k 2 2)u1(k 2 1)
20.11 y2(k 2 3)u1(k 2 2)
20.10 y2(k 2 3)u2(k 2 1)

0.07 y2(k 2 1)u2(k 2 1)
21.58 y1(k 2 2)2

2.00 y1(k 2 3)u1(k 2 1)
24.92 y1(k 2 3)2

0.34 y1(k 2 3)y1(k 2 2)
0.26 y2(k 2 2)

Figure 2 Output data obtained by the mathematical model against the pseudoran-
dom multilevel input signals with PS 5 0.5 and four levels and the response of the
identified polynomial ARMA model.
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specific viscosity, one can calculate the weight-
average molecular weight from the Mark-Hou-
wink equation, which is given in the form

@h# 5 K~Mw!a (10)

Here, K and a are Mark-Houwink constants,
which may be assumed independent of the tem-
perature. The value of K is given as 3.3 3 1023 for
the case of polystyrene. According to the experi-
mental results of this study, the parameter a is
determined by

a 5 0.62 1 0.002~h 2 hX50! (11)

The schematic diagram of the experimental
system is shown in Figure 4. The jacketed glass
reactor has a capacity of 1 L and the overflow line
is installed at the upper part of the reactor, so
that the volume of reaction mixture is kept con-
stant. An inverter maintains the stirring speed at
300 rpm. Heating or cooling of the reaction mix-
ture is carried out by heating–cooling water
through the jacket. The valve stem positions of
the hot and cold water lines are adjusted, in a

cascade control configuration, in such a way that
the jacket inlet temperature is kept equal to the
desired value specified by the master controller. A
variable-speed, remote setpoint pump is used for
pumping the solution of monomer, solvent, and
initiator into the reactor. This is a piston-oper-
ated metering pump from FMI LAB (Model
QVG50). The reaction product flows out of the
reactor via an overflow line.

To measure the density and viscosity of the
reaction mixture, the circulation line is attached
to the reactor. The reaction mixture is circulated
by the diaphragm metering pump through the
circulation line, in which the on-line densitometer
and the viscometer are installed. The on-line den-
sitometer is DMA 401 YHEW from Anton Paar,
whereas the on-line viscometer is MIVI 6002 from
SOFRASER. The set of reference conditions for
the experiment are summarized in Table III. The
reaction mixture is sampled at successive times,
and the conversion is measured by the gravimet-
ric method, while the average molecular weights
are measured by the gel permeation chromatog-
raphy (GPC).

Figure 5 shows the results of the experiment,
which is performed to examine the validity of the
on-line measurements. The solid curve in Figure
5(a) represents the conversion calculated from eq.
(8) using the measured density, while the solid
dot denotes the conversion measured off-line by
the gravimetric method. In Figure 5(b), the solid
curve and the solid dot represent the weight-av-
erage molecular weight obtained from the on-line
measurement and the off-line GPC, respectively.
In both diagrams the two results are in good
agreement, and this indicates that the on-line
measurements may be used for identification of a
continuous styrene polymerization reactor using
a polynomial ARMA model.

Presented in Figure 6 are the experimental
input–output data used to identify the models for
the conversion and the molecular weight. The
output data were obtained from the correlations
(8), (9), and (10) using the density and viscosity
data measured by the on-line densitometer and
viscometer, respectively. The input sequences
were drawn from a uniform distribution with PS
5 0.1 and four levels. Because polymerization
processes have large time constants, it may be
desirable to incorporate a clock period, Tcl, which
is an integer number of sample periods for which
the inputs are held constant before possibly
switching again, as is done in identification of
autoregressive plus Volterra model.4 In the ex-

Figure 3 Open-loop responses of the plant (mathe-
matical model), the polynomial ARMA model, the lin-
ear ARMA model, and the autoregressive-plus Volterra
model to a series of step changes in inputs.
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periment, sample period was 2 min and Tcl was
empirically determined as 10. In Figure 6, the
dashed line represent the output data obtained
by the identified ARMA models. The model of
the conversion consisted of nine regressors, and
a VAF of 98.5% was obtained. For the model of
the molecular weight, 10 regressors were in-
cluded, and a VAF of 97.2% was obtained. The
results of the identification experiment are
listed in Table VIII. As shown in Tables V, VI,
and VIII, the experimentally identified models
were superior to the models identified by simu-
lation. This indicates that the input sequences
randomly determined in the experiments were

more relevant than in the simulation, and
hence, the nonlinearities of the process were
better included in the experimental input– out-
put data.

Figure 7 shows the response of the experimen-
tally identified ARMA model to a series of step
changes in inputs in comparison with the on-line
and off-line measurements. The small discrepan-
cies are present in the high conversion range,
probably because the input–output data in that
range were not used in identification (see Fig. 6).
If the identification is performed by including the
input–output data in the higher polymer concen-
tration range, the identified ARMA model is ex-

Table VII Simulation Results of the Identification for Linear ARMA Models and Autoregressive-Plus
Volterra Models Using Pseudorandom Multilevel Input Signals with PS 5 0.1 and Four Levels

VAF
Conversion y1(k)

Weight-Average Molecular
Weight y2(k)

89.5% 94.4%

Parameters Regressors Parameters Regressors

Linear ARMA Models 0.004 1 0.03 1
1.422 y1(k 2 1) 1.892 y2(k 2 1)
0.144 y1(k 2 2) 21.111 y2(k 2 2)
0.013 u1(k 2 1) 20.086 u1(k 2 1)

20.008 u2(k 2 1) 0.029 u1(k 2 3)
0.003 u2(k 2 2) 0.118 y2(k 2 3)

20.008 u1(k 2 3) 0.04 u1(k 2 2)
0.008 u1(k 2 2) 20.035 y1(k 2 1)

20.629 y1(k 2 3)
0.003 u2(k 2 3)

VAF 89.2% 95.0%

Parameters Regressors Parameters Regressors

Autoregressive-plus
Volterra Models 0.012 1 0.016 1

0.898 y1(k 2 1) 1.647 y2(k 2 1)
0.154 y1(k 2 2) 20.520 y2(k 2 2)
0.017 u1(k 2 1)2 20.073 u1(k 2 1)2

20.008 u2(k 2 1) 0.085 u1(k 2 1)u1(k 2 3)
0.006 u2(k 2 2)2 20.057 u1(k 2 3)2

0.005 u1(k 2 2)u1(k 2 3) 0.037 u1(k 2 1)u1(k 2 2)
20.011 u2(k 2 2) 20.039 u1(k 2 1)

0.004 u2(k 2 1)u2(k 2 2) 0.002 u2(k 2 1)
20.007 u1(k 2 3)u2(k 2 1) 0.034 u1(k 2 3)

0.003 u1(k 2 3)u2(k 2 2) 20.179 y2(k 2 3)
20.003 u1(k 2 1)u1(k 2 3) 20.001 u2(k 2 1)2

20.188 y1(k 2 3)
20.001 u1(k 2 1)u2(k 2 1)
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pected to more accurately estimate the conversion
and the weight-average molecular weight in that
range. Here again, the on-line and off-line mea-
surements are found to be in good agreement with
each other.

CONCLUSIONS

The multivariable polynomial ARMA model iden-
tification for a continuous styrene polymerization
reactor was performed by simulation and experi-

Figure 4 Schematic diagram of the experimental system.

Figure 5 Comparison of monomer conversion and the weight-average molecular
weight between the on-line measurements and the results of off-line analysis.
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ment. The on-line measurements for the mono-
mer conversion and the weight-average molecular
weight are found very effective in identification of
a polymerization reactor system. The conversion
and the weight-average molecular weight data
determined by the on-line measurements are in
good agreement with the off-line data obtained by
the analysis of the samples of reaction mixture.
The polynomial ARMA model, identified by using
the on-line measurements, turns out to satisfac-

torily describe the dynamic behavior of the con-
tinuous styrene polymerization reactor system.
Therefore, the polynomial ARMA model may be
effectively employed for the property control and
optimization of a continuous polymerization reac-
tor.

The authors wish to acknowledge the financial support
of the Korea Research Foundation made in the program
year of 1997.

Figure 6 Output data obtained experimentally against the pseudorandom multilevel
input signals with PS 5 0.1 and four levels and the response of the experimentally
identified polynomial ARMA model.

Table VIII Experimental Results of the Identification Using On-Line Measurements

VAF
Conversion y1(k) Weight-Average Molecular Weight y2(k)

98.5% 97.2%

Parameters Regressors Parameters Regressors

Models 0.01 1 20.002 1
0.49 y1(k 2 1) 0.58 y2(k 2 1)

20.001 u1(k 2 2)2 0.37 y2(k 2 2)
0.32 y1(k 2 2) 20.15 y2(k 2 3)u1(k 2 2)

20.14 y1(k 2 1)u2(k 2 2) 20.03 u2(k 2 2)
0.07 y1(k 2 3) 2.19 y1(k 2 1)y2(k 2 1)
0.02 u1(k 2 1)u1(k 2 3) 21.17 y1(k 2 3)y2(k 2 1)

20.008 y2(k 2 3)u1(k 2 1) 0.06 y2(k 2 1)u1(k 2 2)
20.01 y2(k 2 3) 20.02 u1(k 2 3)u2(k 2 2)

20.07 y2(k 2 3)u1(k 2 1)
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NOTATION

A 5 heat exchange area [m2]
C 5 mass concentration of polymer [g/mL]
f 5 initiator efficiency [2]

Fk 5 kth moment of dead polymer concentra-
tion (k 5 0, 1, 2) [mol/L]

Gk 5 kth moment of living polymer concentra-
tion (k 5 0, 1, 2) [mol/L]

DHp 5 heat of reaction for propagation [cal/mol]
I 5 initiator or its concentration [mol/L]
k 5 reaction rate constant [s21] or [1/(mol z s)]

M 5 monomer or its concentration [mol/L]
Mw 5 weight-average molecular weight [g/mol]

n 5 number of lags on output or input [2]
q 5 volumetric flow rate or number of inputs

or outputs [mL/min] or [2]
S 5 solvent or its concentration [mol/L]
t 5 time [s]
u 5 process input [2]
U 5 overall heat transfer coefficient [cal/(m2

z K z s)]
V 5 volume of reaction mixture [L]

Wsf 5 weight fraction of solvent [2]
X 5 monomer conversion [2]
y 5 process output [2]
ŷ 5 estimated output [2]

Greek Letters

h 5 viscosity [centipoise]
[h] 5 intrinsic viscosity [mL/g]
hsp 5 specific viscosity [2]

u 5 parameter in the polynomial ARMA model
[2]

r 5 density [g/L]

Subscripts

a 5 ambient
c 5 coolant
d 5 initiator decomposition or densitometer
f 5 feed
j 5 jacket

m 5 monomer
p 5 propagation or polymer
r 5 reactor
s 5 solvent
t 5 termination

tc 5 termination by combination
trm 5 chain transfer to monomer
trs 5 chain transfer to solvent
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